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§ 2.1 Introduction:

The need of some theories / formulations in the fielq of statistics appeared
in the works done under the project entitled “Probabilistic Forecasting of Time Series”.

Some of the needed theories / formulations are est

ablished ones that arc available in

many literatures. However, some needed formulations / theories are noy ¢

stablished onces.
Theses had 1o be developed due 10 necessity. In this chapter, a brier

discussion on cach
ations that have been de

of the theories /7 formul veloped in thig study have been presented

below. The existing theories / formulations whicl, have

been applied in (his study have
also been outlined below.

i § 2.2 Definitions of Probability:

The three significant approaches, other
Intuitive Approach (Ref. 70, 71,

through which the the

development are

.t (1) Classical Approach introduced by Bernonyy; (Ref: 5.6

Approach developed by 1y, Mise

& 126 and by Fisher (Ref. 46 & 48)
and (3) Axiom

35,53 & 118),

2 Bmirie _
) Empirical S(Ref. 51.65123 124 125

atic Approach constructrd by

ti Kolmogorov ( Ref. 67,68 & 69).

B The two definitions of Probability )y pl
study are its classical definition due (o Bernoutl

: and its empirical def
'.f:. Mises and isher.

Bernsiefy, (Ref 7 & 8) and by

ay the vital rgle m the current

nition dye to von

§ 2.2.1 Classical Definition of Probability.

The classical definition ofprobability due to Bernouli i as follg
as ws:

Definition (2.2.1): If it experiment re L,.\,/,(,”‘s.”.‘,e'

SHlty iy gy Possihfe

| utnally exepysive
and equally likely outcomes and if out of these

noutcome

S m ontcome
anevent Lothen the: probabitity of the et

Yare favourable o
nee of the ) )

fthe evepy I deneey by (1) is
hefoniedd by |
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Number of mutnally exclusive and equally likely cases favorahle to I

D(L) -

Numher of mutnally exclusive, cquallv likeh: aned exhanstive cases of the experiment

§ 2.2.2 Basic Propertics of Probability:
Following properties of probability that are basic in nature follow from
Delinition (2.2.1).
Property (2.2.1) ¢ Forany cvenl I,
| 0< P(l) £1.
Corollary (2.2.1):  Forany cvent I,
PUTY - PO b PO PR

where /- is the complementary event of /.
Corollary (2.2.2):  Forany cvent I

0, 17/ is impossible event

P(l) = {

I, T/ is certain cvent
Property (2.2.2) : If {/, fh, . I} is a set of mutually exclusive and
exhaustive cvents of a random experiment,

P +PUR) *+u +P() = 1.
Property (2.2.3): [f4 and B are two mutually exclusive events,
P(AUR) = P(A) + P(13).
In general, if Ay, A2oooooee ,A,aren fnutually exclusive events |,
P(AUAU. . Uda) = (A L DA+ PO

Property (2.2.4) : For any two cvents Aand B3,

POANRY = DAY PUBIAY - DU DA
where 74 is the conditional event of' 4 given /3 and similar is the case of B4,

It A and 3 are two independent events then

POANY = POAY P(J3),

Property (2.2.5)

§2.2.3 Fmpirical Definition of Probability:
‘he empirical definition of probahility due to Fisher is as follow
Definition (2.2.2): [[ the experiment is repeated N times under identical /i
dEconditions qyy

if out of N repetitions an event [y oceurs Ny fimes then PelS)
. /e 1N

Rl

probability of
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ocenrrence of a, is o tmmber towerds vwhich the ratio N, N (callod the relative frequency

of CCHrrence of l) approaches av N hecomes lareer i,

N, )
N = PMl) oas N —>
ie. P() = Iy % (2,2.2)_
N— o '
The basic properties of prob

ability described in §2.2.2 canbe est
from this definition also.

ablished

§ 2.3 One Generalization of the Classical Definition of P

The classical definition of probability
points are equally likely. In the situation whe

one cannot define the probability of

robability:

holds good ir and only if (he

sample
re the sample points

are not cqually likely,
ample sp

an event with the help of s

in this study, has been m
probability introduced by Bernoulli to the situati

ace. To overcome

this trouble an attempt, ade 1o extend the classic

al definition of

on where the Possible outcomes are not
equally likely. This has been discussed below.

Let us consider g simple random Cxperiment 1y results in (e 4 possible
oulcomes (also known ag (1) clcmcmar_y cvents and (ii) g cascs) viy,
Cho 1,

............... L (2.3.1)
These possible outcomes are obviously exhaustive anq Mutually exclusive. The set

S-{evey ..  Cy ) (2.3.2)
is nothing but the sample space of the experiment dye

0 von Miseg . Thi
sible outcomes of

sample space of the experiment can a]

is the set that contains all the pos e exXperimen;
SO be called the Outcome sp
event space of (he experiment. 11 (he possible

Therefore, this

ace or the elementaly

otcomes of (he CXperimens gpq equally
likely, the probability of an event /- denoteq by P(/) can be def;

ned with he help of the
outcome space S given by (2.3.2) since
Number of mutually exclusive and cquiliv

likely cages fnvurnhlc to /¢
——

P(1.)=

Number of mutually exclusive. cually likely ang exhangti

233
VC cases af )¢ (23.3)
and since both of the numerator and the denomin

CXPerimen
Aor of he

SXpression iy, the right hand
side ol equation (2.3.3) can be obtained directly from (he

Outcome Space

the possible outcomes are not cqually likely, the Drohabnlny of

However, i
an cveng 4. associated 1o
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the experiment cannot be defined with the help of its outcome space since in this
situation the numerator and the denominator of the ratio in the right hand side of

equation (2.3.3) cannot be obtained from the outcome space §.

Now,
€L, ey are equally likely
< Ple) Ple)y o Pley) I (2.3.9)
But il
¢y, O o ST , Cn

are not equally likely then the equality in the right hand side of the tautology given by

(2.3.4) docs not hold good.

Let us consider the fact that the outcomes ¢1, ¢a, .............. ¢, are nol necessarily
cqually likely. Then Pley),  Ple2), ..., P(e,) are nof necessarily identical,
Suppose,
Pley [N (i=1,23 .. . L) (2.3.5)
Then
n
>SN .
=1 . : (2.3.6)
v "
since > Ple)=1
(=1

Here the outcome space is nothing but the sct S, given by equation (2.3.2), containing n
€ases which does not admit to define P(e,) as well as to define P(Z) for any other event I

Now, y

Ple)=1- N
(for i=1,2,3,.......n)
Means that had there been 1 mufually exclusive, equally likely and exhaustive cases, f;
cases wm;ld have been favourable to the clementary event e, =12 3 v 1) . This
Means that the outcome space would have been S where
N e e, U2 e ey ) (2.3.7
CNtaining ¥ mutually exclusive, equally hikely and exhaustive cases, trealing cach of

them 1 e distinct cases, among which the outcome e, appears f, times (/ = 1, 2,

1) i ather words, the outcome space would have heep
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S’= {ghgz, ............. ,ﬁ-{-\/l) (238)
containing N mutually exclusive, equally likely and exhaustive cases where
L’l for i=]‘2, qo-uooc-',./‘l
¢o for J /|+], fl‘,“?_, trecenaas . ,/]+f:
'L', - M I N N S AR AR R XX IYY (23 0)
1 1 1
v, lor g os- >_:/,| I, }_:/,'2‘ teenaa, ...2_:_/,
=1 1= /=

The space S enables one to define I'te) by the classical approach yielding

P(e,) =f,/N | (1'21‘2.3,.......‘,17)
. v yrobabil; T wher event 1 associnge S X PO

Also, the probability of any othe cvent I assaciated 1o the experimant can be de

the classical approach with the help of (he sel S sinee

fined by

the requiremeny in defining P(/2)
by the classical approach are fulfilled by § :

- Thus, i . ) )
l rment resulig I 2 possible

) ian expe
outcomes viz.,

4 ’
¢, ¢a,

which e not necessarily equally likely withy
Pe)=/i N for = 4 -

15 conducted then its outcome SPace can be thoughy

fas equivalent 1q the sp

by the expression (2.3.7) or cquivalently by the eXpression (23 )
D.8) w

ace.y given

hich enable to
| 2 | S one
define the. probability of an even as per the logic/phi!oso l

g . N ‘ p ‘y
approach to probability. This space N is thus the prob
the prol)abilit_y delin

behing the classical
ahility defin
21[)]6 Space

experiment. Thus, one can define

able space of the
follows.

and (he probability as
Definition (2.3.1):

Definition ofProbability Definable Sp

ace
Suppose, the outcome Space of

an EXPerimen IS
Mey  feres

0

with

I)((v',) = "/N R ( , I’ 2
Then, the set (e ) given by

Cy
‘\' » = () S ()2 ’(,-J, ,
(e)y=1{e e
where ¢ s a function of x with the domain 2310
/v Y, N

and with the counter domain S(e ) with e, defingq by
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ey for x=1,2, ............. , I
¢y for x=m+l, m+2, ... .. HpV A
e 4 RO (2.3.11)
k-1 k-1 k-1
¢ forx Y+l Sat2 =N
i il i

can be called the probability definable space of the experiment .
Definition (2.3.2):

Definition ofProbability

The probability of an event /v associated to a random experiment can be
defined by

Number of case in the probability definable space favorable to /¢
(1) - - (2.3.12)
Number of cascs in the probability definable space of the experiment

The basic properties of probability described in § 2.2.2, which follow from
hoth of the definitions viz. the classical definition and the empirical definition can be

derived from this definition also.

§ 2.4 Link between the Classical Definition and the Empirical Definition
of Probability:

In this Kection, o briel" discussion on un attempt that has been mnde to senrehy
for if there exists any link between the two definitions of probability viz. the classical
definition and the empirical definition has been presented.

As earlier suppose, aft experiment r2sults in # possible outcomes viz.

Cr, €2, . .. .........,Cpy .
These are obviously mutually exclusive and exhaustive. They may be equally likely or
may not be equally likely. If the experi'ment is repeated N times under identical
conditions and if out of N repetitions the event ¢, occurs N, times then by the empirical
definition of probability, the probability of occurrence of ¢, denoted by P(e;) is a number
;. towards which the ratio (known as the relative frequency of occurrence of ¢)) NN

approaches as N becomes larger i.e. P(¢,) = p, is a number such that -

N,
N T Ple)) as N oo
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ie. Ple) =p = Iy _ANT ~ (2.4.1)
N—» .

This can be expressed as

Ple) =N 1 v, v (2.4.2)
N
where Vi) = 0 as N — o

Here, V, (N) is the difTerence between the probability of occurrence of ¢, and the relative
frequency of occurrence of ¢ among N repetitions that moves towards zero as the
number of repetitions N becomes larger. Hence, V,(N) can be called 1he vanishing term
of the event ¢, in N repetitions of the experiment.

Basic Properties of P(¢;)

The basic propertics of P(e)) are discussed below,

Property (2.4.1)):  For any event ¢, |,
0< Pe,) <

Proof: This follows from the fact that the number of occurrences of'¢; in any number of
repetitions of the experiment is non- -negative and cannot exceed the number of
repetitions,

Property (2.4.2): The sum of probabilifies ol the clementary eve

n
i"/ P((.',) = I

nis is unity j ¢

Proof';

2 P(e)
i e
n
= pA Lt Ny, '
a ( N—>x Nj » by equation (2.4.1)
— /, II‘ Nl N
= N—0 ( ,%2‘/ N ) . by additjve property of limit
= 1.

Property (2.4.3.): For two elementary events ¢, ane/ e,

Ple, U ¢)) = P(e) + P(e)
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Proof: 1l ¢, occurs N, times and ¢, occurs N, times out of N repetitions of the
experiment, e,{/¢; occurs (Nt M) times out of the same N repetitions because of the fact

that ¢, and ¢; are mutually exclusive. Hence ,
Plelle) = Li ( M,_) . by equation (2.4,1)
\ N : '

N
= Lr N v Lt N
Noow N N—)ooN

= P(e¢;) +P(¢;), by equation(2.4.2).

Generalization: Gieneralizing it |, one can obtain that
ni "
P( Ve, ) = = Ple), msn
;! i/ |
n
U e,
Corollary (2.4.1): P =] =

i.c. probability of occurrence of either of the elementary events of a random experiment
IS unity.

Proof: i
,( Ue, )
\ i/
H
\e
= ;_; P(e), by the property (2.2.3)
= ‘” ;‘/’_)m %"- , by equation (2.4.1)
i1
n
1.1 AN , . . )
N oo, g N« byadditive property of Timit
n
[, since YN, N
1o
Property (2.4.4): Ple) 1 Pley)

where ¢, is the complementary cvent of e, .
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Proof: The cvent 7, is the non-occurrence of ¢,. Thus if ¢, occurs N, times out of N
repetitions, ¢, does not occur N — N, times out of N repetitions. IHence
P(e)

=l N-N;
N—om N

— 1 = P(e)

. byequation (2.4.1)

This property can also be obtained from the earlier property also as follows.

¢, is the non-oceurrence ol ¢, This means that ¢/ is the occurrence ol either of the
clementary events¢; (= 1,2, ..., n & j#1i). Hence
P()

n

P L e)

i#l ji
n

—t

Py _P(¢)) . by the generalizatioq of property (2.4.3)

n

= 2 Pe)-P(e)
j=1

I - P(e:) , by the corollary of property (2.4.1).

Basic Properties of V(V)

The following two properties of V(N) play the vital role in the case of
empirigal probability.
Property (2.4.5): VAN) -> 0 as N -y -~
e L "Ny 0
N »e
Proof:  This is obvious from cquation (2.4.2)

Property (2.4.6); n
L V:(N) = ()
i

i.e. the sum of the vanishing terms corresponding to the elementary events in any number

of repetitions vanishes.

Proof: We have
1
.‘-Z *(ey) (. '\y propeity (241 2)
1!
Henew,
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n :
s { T{/V_._ + V(N } =1, by equation (2.4.2)

1
N n

Henee, Ao (N) 0, since YOONON
il [

Definition (2.4.1):

Definition bf Fmpirical Probability in terms of V; (N)

With the help of the above two properties of V(N) viz. Property (2.4.5) &

Property (2.4.6) and equation (2.4.2), the empirical definition of probability can also be
expressed as follows:

[f an experiment, having the elementary evenls ey, e, ... . e, is repeated N times

wnder identical conditions and if out of these N repetitions an event e; occurs N, times

then the probability of occurrence of e, denoted by P(e;) can be defined by

Py = Moo

5t
where, () Vi(N)->0 as N->»
n
& @G) 2 ViN=0
i

§ 2.4. { Random Events and E mpirical Probability:
A random (or contingent) cvent associated to a random cxperiment is a

combination of some or all of the clementary cvents of the experiment. For a random

cevent associated to a random experiment a lemma that can be proved by constructing
events is stated now without proof.

Lemma (2.4.1): [orany random event associated 1o d randont experiment there exists o
set of mutually exclusive and exhaustive evenls a.s'.s'ocialed 10 the experiment that
contains the said event. This sef is not necessarily unigue.

Let /o be a random cvent associated to the experiment. Then by the ahove

of mutually exclusive and exhaustive events, say,

Ay Ao A,

lemma, there exists a set

associated to the experiment that contains /= Thus, if /7ig the event 4, for some j (1 < <

r) then by the empirical definition of probability due to /'isher |
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P(Iy=P(A) = 11 N(4)
N—oo N
where NCAY s the nnmber of thnes the event ) occms ont o' Norepetibions of the trinl
This micans,

P(Ey=P(A) = 2 (N"’) ! N’fw V{4, : N)

where  V(A,:N)—>0asN -» »,

Here V(A, : N) can be called the vanishing term, as described in § 2.4, corresponding to

the event A, in the N repetitions.

Basic Properties of P(A;) and of V(A4;: N)

Applying similar logic as in the cases of P(e,) and V, (N) described in § 2.4,
ane can abiain the follawing properties of P(A,) and (A, : N ),
Property (2.4.7):  Forarandom event 4,

0x PA) s |

;
, ‘;I P(4) =1

Property (2.4.8) :

i.c. the sum of probabilities of the events in a set of mutually exclusive and exhaustive
¢ . ciis

events 1s unit.

Property (2.4.9) : For the events 4, 4,

a g
PCUAY = & p
i=1 s )

Corollary (2.4.2): Fortheevents 4y, 4y, ........ , A, we have

,
P(IJA) = |
=1

i.e. the probability of occurrence of either of the events A A L
. A2 . A,. 18 un|tyl
Property (2.4.10) ¢ Tor an event 4,

PA) 1 P(A)
where A, is the complementary event of 4,.

Property (2.4.11) : For an event A,

1t T lAL - =
N—)-'J.’)l ({11 . N)"'O
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Property (2.4.12) : .5,

7

V(4,: N)=0

¢ the sum of the vanishing terms in any repetition corresponding to the events in a set
ol mufually exclusive and exhaustive events vanishes.
Definition (2.4.2):

Definition of Empirical Probability in terms of Vanishing Term

With the help of the above two properties of V(4; : N) viz. Property (2.4.11)
and Property (2.4.12). the empirical probability ol a random event can be defined in the
following pattern also.

If an experiment is repeated N times under identical conditions and if out of
N repetitions a random (contingent) event Is, which is an element Ai (say) of a set of
mutnadly exclusive and exhanstive events viz. {Ay, Az, o L Ay associated to the
experiment, OCCUrs N(A)) number of times then the probability of occurrence of I+
denoted by P(I) is defined by

p(/.")‘ (A = _/\_/.(A;_!J L V(A N)

where (1) 5\'/’ - VA, N)Y O
;
A L) ‘EI Vid, :N)Y -0,
’#—.
Here V(4, : N )is the vanishing term in N repetitions corresponding to the event A,.
Note: 1t can be shown that this definition implics the definition of empirical probability

due to Jrisher and vice Versa. Hence, the two definitions are equivalent.

§ 2.4.2 Classical Probability As a Special Case:-

et the random experiment be such that the possible outcomes ie. the

clementary events
Py 02, s Un
are equally likely e each of them has equal probability of being occurred. Now

Cpa €2y cenneeenes Cn ATC cqually likely

Pley - | . lorall s

1"
(since =, Ple) = 1. by property (2.2.2)
, .
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Let A he an event. not necessarily clementary, associated to the experiment. Then Aisa

combination of some of the elementary events ¢, ¢s, ....., ¢, Without loss of generality

let A be a combination of e;, e, ..... ,em(m<n). Then

"
A U,
il

Using Property (2.4.3) one can obtain thal
m
P S Ple)

m L. :
= since I’ (¢)  Ion forally

e P(A) = : Number of clementary events favourable (o A
e Number ol mutually exclusive, cqually Tikely and exhaustive clementary cvents

This is the classical definition of P(4) the probability of occurrence of the event. Thus
the classical definition of prabability can be obtained from its empirical definition when
the elementary events are equally likely.

Some Remarks

Remark (2.4.1): The vital properties of probability discussed in § 2.2.1 can be

derived from this definition also.

Remark (2.4.2) ¢ The set

s nothing bt the CIcmc'."“W cvent sel (or space ), abbreviated as BES, of the experiment
while the set
Pewes UM
|~. nothing but the favourable elementary event sct (or space). abbreviated as FEES. in the
15S of the event A so that
. n = the size ol the EES of the experiment
and  m = the size of the FEES in the EES of 4.

Therefore, P(4) can be summarized ns

P(4) = The sizc of the FEES. in the ESS. of .|
TThc §i7¢ of T EES Of TRE CXperimet

§2.5A Theoretical Definition of Probability:
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Here, a brief discussion on an attempt that has been made to search for an
(lppl’()a(.",h of defining probability that can be a basis of searching for method / metliods of
determining the exact value of the probability of an cvent has been presented

Consider an experiment that has two possible outcomes viz.

¢y & 03

Now and onwafds‘ performing of an experiment (i.e. an experimentation) will be called
perfect i it does not contain any crror (even the random error too). Il the experiment is
performed once, any one of the two possible outcomes may occur. But, none of them is
sure to be occurred. This is due to the fact that in one trial only one of the two possible
outcomes can occur. Since ¢1 & ¢ are possible outcomes, each of them has a chance (and .

hence a probability which is nothing but a measure of chance) of occurring in a trial. By

the statement

“ the event ¢; has a chance of occurring in a trial”
we mean that the event ¢; will occur sometimes if the trial is repeated a suflicient number
of times and ' the experimentation is a perfect one. Similar is the casc of ¢2. Now, ¢; &
¢2 may have equal chances or different chances. If they have equal chances, they will

oceur cqual number ol times i the trial is.repeated cven number of times and if the

experimentation is pertect. If the chance of occurrence of ¢q is more than that of ¢,

under similar repetitions of the trial ¢; will occur more times than that of ¢» and vice
< < <

versa. Thus, il
Pley) - Plea)

then cach of ¢y & ¢z will occur
once out of 2 repetitions of the trial ,

twice out of 4 repetitions of the trial .

o1 times out o 2 repetitions ol the trial

provided the experimentation 1s a perfect one.

Conversely. if the above picture of occurrences of ¢y & ey happens then this means that ¢,

currence 1.e.
P(ey) - Plea)

& ¢, have equal chances of 0C

Similarly, il
ey mP(ey)



. . EPSTUICRLCIPHE o Andeatodt 7 b T
e Sre e desah 8 s

Report of the Project “Probabilistic Forceasting of Time Series” 20

then

¢ will occur.m times and ¢, will occur once out of i 1 trials ,

¢y will occur 2m times and ¢ will occur 2 times out of 2(m 1) trials |

...........................

¢i will occur nm times and ¢z will aceur » times out of  n@n 1) trials |

provided the experimentation is perfect.

Conversely, if the above picture of occurrences of ¢y & ¢, happens then this means that

the chance of occurrence of ey is m times than that ofer e,

Pley) mPlesy)
Now, to define the probability the following three facts are to be considered:

(1) Probability has been defined in terms of relative frequency in the empirical

approach due to /isher and von Mises. -

(2) The classical definition of probability is a special case of its empirical definition
(discussed in § 2.4.2).

(3) The axioms or the postulates by which the probability is defined in the axiomatic

approach by Bernstein and Kolmogorov are nothing but the theorems derived

from its classical definition due to Bernounlli.

These three facts together establish that the definition of probability in terms of relative

frequency can be treated as a basic definition of probability. Now, in the first picture of

urrences of ¢, are
Ya, 214 = V4, 3/6 = Yo, oo

¢1 e ey, the relative frequencies of occ

. m2my= s

that are constant and equal to % . Hence,

Pley) = v
Similarly, for the outcome e, ,

P(er) =
Applying similar logic as in the case of the first picture of occurrences of ¢

1 & ey to the
second picture of occurrences of ¢, ¢ ¢,

» One can obtain that

ne
and  P(e,y) = ..,,.l.-‘_
ne -

Thus it has been found that
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(1) if P(e1) = V2= P(ez) then the first picture of occurrences of ¢y ¢ ¢» happens and
vice versa

nm_ e P(L'2)=-J~---~

m+1 IER!

and (2) il P(e)) =

then the second picture of occurrences of ¢; & ¢, happens and vice versa .
[n a similar manner one can arrive at the fact that if
m
Pler) —
M

then ¢y will occur
m times out of M repetitions of the trial

2 times out of  2M repetitions of the trial,

< pm times out of nAM repetitions of the trial |

provided the experimentation is a perfect one and  conversely if the above picture of

oceurrences of ¢ & ¢> happens in a perfect experimentation then

m
M

P(ey)

In general, if a random experiment has 4 possible outcomes viz.

Cl,a €2y i s Ck
then by applying similar logic one €an arrive at the fact that if
Pey=m M, (i=1,2, ... k)
then e, will occur
’ m, times out of M repetitions of the trial ,
2m, times out of 2A4 repetitions of the trial ,

s, times out of 1M repetitions of the trial

provided the cxperimentation is a perfeet one and vice versa

S

ey e e

LB st st .

SR S LS R Yo R T i)

et
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¢ Note : From the above theoretical facts it is clear that an arbitrary event /; occurs gy
L times out of 1R repetitions of the trial (# = 1,2, ... ) for unknown r and Thus the

probability can be defined theorciically as Follows:

Definition (2.5.1): /f a trial is repeated in such a wayv that the experimentatio, is o

litions of the triqr for n= |

At perfect one and if an event IS oceurs mm times ont of nh repe

i . "
203 then the probability of acenrrence of the event 2, deneto, hy DU
i . “])
i} defined by
i
! m

Py L

. / M

Definition (2.5.2): The prohahility of an event 1.

assacictied ey ¢ ,
mlmna/ number (mM) such that if the trial is repe such a way that 1he

. experimeny
iy a perfect one, the event 15 will oecur nm limes out of n\f repetitiony of the 1 1
' B > 1rial fo ) =
], 2,3, .

"Unelosn, CXperimeny iy,
ated in

Combining these two definitions (or equalemly from
lh(WL) one can obtain the lollowmx, fundament;

the facs mentioned
al proposition:

,l roposition (2.5.1): /£ 17 ix an evest associented 10 o oy, expe

inesyy they

' 124
i pery
i . Y

,/[ and only if I occurs nm times out of nM repetitiong of the
A'” '

3 S « provided the experimentation is a perfe

malforn=1 45,

¢l one.,
“ B'lsuc Properties

E"‘ The basic properties of probability discussed in

ne

Y221 canp
: € eqtall:
trom this definition also. Stablisheq

§ 2.6 A Method of Determining the Exact Value of )
Event: he Prol)al),“ty of

Now, a brief discussion on an

| attempt of geq

ching o,
dum mining the value of the probability of an cveng has been Outlined , clow a Methog of -

As earlier here also we consider g g

i

dom ox

Xperi
! . Mmeny hﬂvin,
OUIC()IT]CS .

: ith respective probabilities
W $
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/. e A
Suppose, lhg associated trial is repeated a suflicienly large number of times
(say, M times) under identical condition and the eveny ¢, aceurs fle, s N) times oul ol'these
N repetitions . Then Rie, : Ny, given by,

: N
is the relative frequency of occurrence of'e, out of ¥ repctitions of the trial.

Suppose, /. is an arbitrary event (clementary or other) associated to the

random experiment with

Py - - m

A

where m & M are unknown | Of course, m and M are positive integers with <M.
The aim here i3 to determine the value of P(R). 1€ m M hecomes oqual o some ralative
ﬁ'cqucnc_y./ frequencics then it can be cqual to the relative f‘rcqllencics

Rty r, M), /f(f.’ 2N, ROE oM, L ele.
(for r=1,23 . ) where (I : r, M) denotes the relative frequency of occurrence of
L out of M successive trials treating the » ™ trial as the first one . It can never be equal to
any relative frequency other than these.

Considor tho relative frequencios

R(IS v, M) = e My |, (r= 1,23, ... ),
: M

whcrp./(/',’ 1 M) denotes the frequency of occurrence of I out of M successive trials
treating the /" trial as the first one. The ratio mA4 can be equal to (7 : r, M) if the
associated experimentation is a perfect one. In reality, however, it may not be equal to
R(E 1, M) due to the fact that no experimentation in reality is free from random error
which is uncontrollable in any real situation and hence AU 2 v M) is influenced by the
presence of this error.

In a trial, the frequency of occurrence of /- is either ‘0" or ‘1 1 is ‘1°if
I aceurs and 07 ifit does not occur in the trial. When the true frequency of /7 js <1 ’, due
1o the presence of random error the observed frequency must be

either 0" if the random error exists
or ‘1" if the random error does not exist

(since the only two possible frequencies arc *0° & )L Thus in thig case the possible

values of the random Crror are
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-1 &0,

Similarly when the true frequency of /7 is *0”, the possible values of the random error are

0&1.

Therefore, the frequency 74 1 M) sullers from an error

rop-f
e(lv:r, M) = > del ;i)
i-r

where d(/c: i) assumes the values

(i) cither 0" or ¢ 1 corresponding to cach of the AAF: M) trials that results in the
ocgurrence of /v

and (ii) either 1" or ‘07 corresponding (o cach ofthe M - fp2 + M) trials that results in
f LN el X b .
the non-occurrence of /s,

Since d(/s : i) occurs due to the random error and since jtg possible valy ‘
. ues are
-1,0& 1 '
therefore, for some value or values of r the ter ; '
X m 3([: Cp M van; .
Ny anishes . This means that

m ' ¥
i RIS r, MY, for the same valye o values of

Similarly, the ratio viz.

ni
M
will be equal to each of the f‘ollowing viz,

R(IZ: 1, 2M)  (or some value or vq

. ues of r |
RO r MY for SOMe valye g values of
h A ,
R(EE: 1, kM) for some value gr values of
of'

Ceey
c .
........

Therefore, the ratio m/M, which is equq 10 the vaye f i
frequency that corresponds to each of the following v OF P, will be the relative
1z, |
the M* trial in one or more sets

- of th
the 2A7" trial in one or More

LR
.......

’’’’’
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where
C(f) = (SO :r)yr=1,2,3, ... }
with :
SEcn={RE:rny: n=12, .. ..M ... 2M, . KM, ... N},
(r=1,2,3,..... ).
Thus, P() is a fixed relative frequency that corresponds (o llfc "o, R )

trials in one or more sets in the collection (/) where 7,4 is a multiple of 7; . Thus the
following theorem has been obtained.
Theorem (2.6.1): [f 15 is an event associated 1o« random experiment and if the
associated trial is repeated a sufficiently large number of times under identical condition
then P12, the probability of occurrence of the event I, is a fixed relative frequency thar
corresponds to cach of the (m?) th frials(m = 1,23 ... ... .. ) it one or more sefty in
the collection COEY given by |
OB =S :r=1,23, ... }

with

SE:ry={RIE:rymy: n=12, ... M ... . 2M ... . VKM, ... N}
where R(E : r, n) is the relative frequency of occurrence of I out of n trials rreating the
" trial as the Jirst one and ignoring the earlier r-1 frials .
Note: In the theorem, the term “sufficiently large number of repetitions of the trial” is
used 1o mean that the trial is repeated such a number of times so that it is found that a
fixed.relative frequency corresponds to each of the (m7)™ trials(m = |, 2,3, )

at least in one set belonging to the collection (/%) .
ging

§ 2.6.1 Method of Determining P(L):
In Theorem (2.6.1), one can obscrve that the method of determining the
value of P(/4) consists of
(1) performing the associated trial a sufliciently large number of times under
identical condition,
(2) constructing the sets
N RS B R N NN B I Y VAN VA AL N
forr=1.r=2,r=3, clc (as many as required)
to obtain the collection

CY=4SUny =123y
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it
|
i 4 . _
,4‘:% and (3) to observe if in the collection (/%) there exists a fixed relative frequency that
i h , .
-j‘]; corresponds to each of the (m7) trials(m =17, 3, ... ) at least in one of the
y scts belonging to (/)
Thus, in determining the value of P(/ > needs oo w . .
: Ihus, in determining the value ol P(/2) Ong heeds 1o proceed with the [ollowing sicps:
1
1 Steps in the Method
TFrom the above theorem, it is clear that 1o determine the value of P(J<) one
needs to proceed with the following steps:
Step (1): Repeat the trial a large number of times [« : :
i . | | } - P times (say, N times) under identical

i condition and note down the frequency of aeegrr -

] (,C 1 1) (Y28 Al A P .
; . ‘ o urrence of . at cach repetition. The
ik frequency ol oceanience of 7 any repetition gy e W Gee )
i . OV Al the epetition and 0
i nlherwise . .

e )

i Step (2): . Caleulate fAF5 - 1 | 1) (e frequency <o

b .. ) , ieney gt OcCcurrenc A [ n
il C starting f he 1% (rial o cc ol /Y out 0
i repetitions starting from the 1™ trial, for 5 = Lo N

it v Voby the formulg

s - "

i N n =y h(J: - i

4 ' 1|

;%'I J l By |f‘]’: OCCUI'S

0 where bl 0y L

i |

0, Otherwige '

i Step (3): Construct the set

o ' SUE 1y =14 Rej -

: )= (/..n,l)'. n=1 s N

M caleulating R(/Z : 1) | the rolation o T JN

‘ { g R ) relative “'cqucncy j

repetitions |, by the formula

RUEn vy =pye .

1) it is foung that there
corresponds 1o each of the ( iy T

Step (4): If in the set S(/7

CXists g fixed relat

b . .

]' trialy (m, | A ve frequency that

; where N, is the greatest multiple of 71 lesg than SREAT TS some gy & D
¢

,' frequency is the true/exact value of () Or equagl to N

then that relative
Step (5): 1l no such fixed rel

ative fre(,uency

. f) ~ A aS "nC
caleulate f{F2 2 n 0 2), the frequency of o

Nlio .
' Cirrenee of ned in Step (4), is found then
2™ trial ag the {irst one ignoring the 1* tria) Wt of repe




I
j(l'_,' s,y =% bl D)
=2
SUe:2)= { R on 2) s =12, ... N -1 }.

(@ :-f.-:}flﬁivn the cellection
Co (k)= S(loryer=1,2]
tind that there exists a fixed relative frequency that corresponds to each of the (

tnals (mz— 1, 2, ... , N2 ) for some m; & 13 where N; 18 the gre'ttest

Wip (7); Ir no such fixed relative frequency, as mentioned in Step (6), is found. then

lite A/ 2 1, 3), the frequency of occurrence of I< out of n repetitions treating the 31

n+2

fle:n, )=% b(I:i)
i=3

, #ﬁiﬁﬁ}ﬁconstruct the set
‘ S(3y= AR n 3) 0 - 1,2, N=2).

by: Win the C(yllccliiuh

e Ch) STy i 1,23

i",‘;ﬁ"elf't~l1m there exists a fixed relative frequency that corresponds to each of the (
"?h trials (= 1,2, ..... , N3 )‘ for some m; & Ty where Ni is the greatest

g .of 73 less than or equal to N at least once in at least one set belonging to

_____

If no such relatlve frequency, as mentioned .in Step (8), exists then r’epeat the
1h

pnd stop at the s" step if at the s step it is found that there exists a fixed -l’éfa«tlve

Sheb

gy that corresponds to each of the (m, )" trials. (m\" 1,2, ..., N,) forsome

where N, is the greatest multiple of 75 less than or equal to N at least once

(‘-(l,')..{S(l r)yor=1,23, ... L}
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This fixed relative frequency is the value of P(J5).

Step (10): I by the above steps the value of (/) can not be determined. increase the
number of repetitions and repeat the steps

Note: If by the above steps the value of P(/) can not be determined, it is to be
understood that the number of repetitions of the trial is not sufficient. Therefore, in that

situation one needs to increase the number of repetitions and repeat the steps. The value

of P(L) can be determined by this method if the trial is repeated under identical

condition.

§ 2.7 Stability Property of Relative Frequency ---- Point Projection on
the Total Population of Sul Regions of a Region:

Let a region R be consist of & syl regions viz.
Ri.R, .. R,
Suppose, ‘
N (R, : 1) = Number of persons in the subregion R, at time 7 |

at MR 1) denotes the number of persons in the
region R at time /.

Consider a trial of selecting a person in the region R at random. If a person

fTaom i\lll()ll!.’_{ ”lk! Persons in R 14 .‘iL‘ICC'C(I il l'ill\('(’ln‘ |]]L‘. SC'CC'C(‘ 'K'”‘U“ may h‘.‘l(““' Q)
. (&)

any one-of the # subregions Ry, R, ... Ri and hence each of the subregions can be

associated to a probability that the selected person belong to it.. Let /:, denote the event

that the selected person belongs to R, and P() the probability of occurrence of' /v, (i.e.

P(/.) denotes the probability that the selected person-velongs to R)).

The empirical delinition of probability due 1o lisher (Ref. 46 & 48) that is

hased on the idea of statistical regularity says that il the trial js repeated A times under

identical condition and i out of these repetitions the event 1 ocennrs NI times (then
CUT ., s

(2.7.1)
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The empirical definition of probability due to von Mises (Ref. 51, 65, 123, 124, 125 &
126) says that if the trials repeated A times under identical condition and if the event /-,

oceurs NV(I2) times out of the N repetitions then

N()—> N P(l.) as N—w (2.7.2)
This implies that
N(Ri: 1) »NR: NP as NR:1) »uw. (2.7.3)
which implies that
NR;: ) = N(R:1.P() forlarge N(R: /) (2.7.4)

Thus the estimate/projection on MR;: /) can be determined from the estimate/projection
| of MR : 1) if the value of P(/,) is known. To obtain the value of P(/), equation (2.6.1)
can be applied. Equation (2.7.1) implies that

MR 1N

P(ry= Lt e (2.7.5)
NR: - > NR: 1) .

which implies that

0N R — for large MR 1) (2.7.6)

Thus, cquation (2.7.6) can he used to abtain an approximatc value of P(/4)) with the

abserved values of MR, 1) and MR, 0 1) provided the observed values o' MR 1) are

sufliciently large.
Note: Similar theory can be developed for number of persons of specified sex and
specified age in a subregion. I
NR,.S, A /) number ol persons of the sex 'S & ol the age *A'in the
s v .

subregion R,
at time 7,

I(R,. S, A)=the event that the selected person belongs to all of R, | S & A
’ s &y . .

and P{/4(R,,
then the formulac for MR, S,
MR, S, A1) = MR:0. P

S, A)} = the probability that the event I(R,, S, A)occurs

A1) and PHA(R, S AY) will respectively be

/R, S. At forlarge MR : 1) (2.7.7)
N(R.. S, A: 1 :

, o = L
and  P{I(R,, S, A)} MR- e MR

(2.7.8)



i

Tor e oy M b r e eteese A -

Report of the Project “Probabilistic Forecasting of Time Series” 36

NR,.S, A1
e PR, S A = e - for large MR 1) (2.7.9)

§ 2.8 Arithmetic Progression and Point Projection on Total Population:

Th'c theory of population duc to AMalthus (Ref. 85) states that population
increases in geometric progression while subsistence increases in arithmelic progression.
Though this theory suffers from some shortcomings, one should consider it to have
significant contribution on the researchers in the respective field since it is the root
source of further thinking for the rescarchers. In the current study, it has been thought of
that the changes in total population over intervals (of some length) of time can be
represented by an arithmetic progression,

l.et

N(r) Size of the population under study at time 1.

Let us divide the interval (¢, +h) into » subintervals of equal length d/4 viz.

(1.1 +0h), (1 + Sk, 1 +20h), (1+28h 1+ 30h),

.......... (=D ndh)
(2.R.1)

Suppose that ¢; is the amount of change in the number of persons in the /" subinterval i.e.
¢ = NI+ ioh) - N(1 + (i-1)oh) (2.8.2)
If'it is assumed that the total population changes in an arithmetic progression then there

exists some positive integer 1 such that

Cl, €2,C%, v, . Cy (283)
forms an arithmetic progression. Let the first term and the common dilference of the
arithmetic

progression be ‘a’ and ‘d ’ respectively. Then

¢y =

and ¢, - ¢y =d forallj (2.8.4)
There are three parameters of this representation of the change in total population. They

are . *d > and ' The problem here is to estimate the parameters on the basis of the

ObSCTVCd data.

Iet
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M), N(n), Mra), ... ., N(1y) (2.8.5)
be the observed data on N(r) at times
fo, Iy, f2, oot Y _ (2.8.6)
respectively where fo, i, f2, ..o . Iy are equally spaced i.e.
| {,~t,,=h, (say)foralli . (2.8.7)
Let us select three points ’
Nt -2), Ntw 1), M(im) (2.8.8)
in such a way that
(1) Ly = fw V= v = 2

and (1) these three points can cover the given data.

Let us divide the interval and (fm 2. fm-1) N0 subintervals viz.

5 200, w2+ (=2)80 | 1y 2+ (1=1)8h

(tw.2, fm-27F ), (fm -2 + 3,
= ’)M"J (2.8.9)

each of length dh.

Similarly, let us divide the interval (fm- 1
o b GRY, (1 ¥ 2 b 4 (=238 1+ (r1)8h

= ] (2.8. 1’0)

. 1,) into » subintervals viz.

cach of length dh.

Thus, there are 21 subintervals viz.

2 + (5/’ 3 /," 2 + 2(5/’), ........
[;n - + 2(5/’)1 ........ ) [’”l -1 + (’,—2)6]] N /)n -1 + (’]-—-] )6h

(2.8.11)

) + (n-2 _
(/,,,_2 , Ly 2t ()/1), (T s [_fm 2+ (n -)Sh i 2+ (m=1D)8h =y,

.I]’ (’Hl-l N ’/n_ 1 + (sh), (1"1_, | + (5/’ »

= /m]

(arranged in ascending order)
2, i ).

each of length &/ in the interval (fm o |
1) occurs 1n arithmetic progression then the

If the change in N(7) in the interval (7o 2

anges in these subintervals will be

amount of ch ’ A
a+@-ndat pd, a+ (AN a+ (A20d,

a, a+ u’, a+ 2(1’, ......
..... ,a+ (2’1-1)‘i (28]2
respectively.
Auto atically '
maticaily, o {a I (II-')(/} . /\/(/m) - N(l,.,_ 1) (28 13)

Ay oo

a (a1 )t
L a2)dit

-+ {([ 4 (7

\ (20-Dd} = Nt 1) - Mt 2) (2.8.14)
& Lo (p 1 1)d}

Suly; .. Jaain that
mlvmy,l these one ¢l ol
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d = NNty . ) (2.8.15)
2
and 2.n.0 Nty .y) - ")(’:;2]) ANty .2) (2.8.16)
Thus
N(tmex) = N(tw) + [ 2(c +2nd) + (n - 1)d].(n/2) (2.8.17)

Estimates of ‘</’, ‘c * and ‘n” can be abtained from these equations (2.8.1) and (2.8.2).
With the help of the estimates of ‘«/°, ‘c " and ‘1’ obtained, the projected value of N(/,,.x)
can be obtained by the equation (2.8.3).

The basic problem here is to determine three parameters ‘«/*, ‘¢ * and ‘»’ from

two cquations given by (2.8.15) and (2.8.16). The method of determining  these

parameters has been discussed below.

§ 2.8.1 Method of Determining ‘@, ‘c * and ‘i’

Two equations are available to determine three parameters ‘«/ ’, ‘¢’ and ‘#’.

Also we have information that cach of these hree parameters is a positive integer. Thus

to determine these three parameters we are (o praceed with the following, steps:

Step (1): Start with taking a small value of 11, say 1.

Step (2):  Compute the values of ¢ and ¢ 'hy the formula (Z.8.15) and (2.8.10)

respectively.

Step (3): + Observe whether the values of « and ¢ obtained in Step (2) are positive
integers.

Step (4): 1f both of the values of « and ¢ obtained in Step (2) are found to be positive

integers then these values of d and ¢ are their required values and the corresponding
value rg of n is its required value.

Step (8): 1fboth of the values of ¢/ and ¢ obtained in Step (2)

are not found to be positive
integers then take (19 + 1) as the value of » and repe

at Step (2) and Step (3).

Step (6): If both of the values of ¢ and ¢ obtained in Step (5) are found to be positive

integers then these values of « and ¢ are therr required values and the corresponding

value (g -+ 1) of 17 is its required value.

Step (7): If both of the values of ¢/ and ¢ obtained in Step (5) are not found to be positive

integers then take (1m0 + 1 +1) as the value of 7 and repeat Step (2) and Step (3).
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Step (8): Continue the process taking an increased value of » (increased by 1 at each
step) until both of the values of ¢ and ¢ are not found to be positive integers. Stop at the
step wherc both of the values of o and ¢ arc found to be positive integers. These

integral values of ¢ and ¢ are their required values and the corresponding value of

n is its required value.

§ 2.9 Interval Projection on The Total Population of a Region: -

A method of determining iﬁlcrvnl projection on the total population of a
region has been innovated by Chakrabarty and Baruah in 1993 (Ref. 23). 1t has been
found that the method of interval population projection. innovated by Chakrabarfy and

Barnah, has yielded acceptable results in the context ol total population of India (Ref:

23). The method is outlined below.
The principle behind the method of interval population projection due to

( “hakrabarty and Baruah is to determine an interval of length as small as possible within

which the actual total population lies. This can be achieved if one can find out two sets

of estimates: one of underestimates and the other of overestimates, the two sets being as

large as possible The interval with the maximum of the underestimates as the lower

hound and the minimum of the overestimates as the upper bound is an-interval that
[ 4

 satisfies this principle. The method has been discussed below:

et Nt). N1y, Nta), oo 1(1,) be the observed sizes ol the population

ol a region at times fo, f1, /2. In respectively where /o, 1, /2. fy arc cqually spaced with
a region ¢ §fo, N 12

fo-fy = f-h = (== 0 T - teo1 =, say.
-

The aim is to nroject on Niros) on the basis of these observed data.

1C ¢ ]

Let { ] 1} be @ set of underestimate and {Us, Uy, Uh, .......... U a
Il(‘a ’Ilg Dy veeeerrt ’

stimates of NMtnix) ob!

en each interval (u;, U)) will contain N(ta+). (u;, 1) is the interval

ained by analyzing the trends ol various measures of
sel of overe

population growth. Th

containing N(tn.x) with the smal !
ehind the method of inte

lest length among all the pq intervals. Therefore, by the

| rval projection, one can treat the interval (n; |
above principle b

. ’ M .N/ ] .
() us a projected interval value of N1k
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The basic problem in this method is to determine underestimates and
overestimates of M/n.x). Chakrabarty and Baruah, after searching, have found out the
following techniques of determining underestimates and/or overestimates of N(/,,\¢).
Technique A

© N(Y) satisfies the rélutionship
A{N(1) = N(tin) - N(t) (2.9.1)
where A is the forward difference operator.

Here A{N(1,) is the amount of growth during the interval (1, 1) . 10 the trend of A{ N(1)
is constant then

/+

N(’lnl\) " /V(I'l) L “ix_ N(,N‘l)

] N

(2.9.2)
would be an exact estimate of N(/,.4). On the other hand, M(1,.1) given by the above
expression would be an underestimate of M(/,.y) if the trend off{ MN(1) is increasing.
Similarly, it would be an overestimate if the trend is decreasing.
Technique B

N(1) satisfies the relationship

Nw) = N(tia) + ANt .2) Y + AT(N(L, . ) (2.9.3)

Here A*{N(f;2)}is the difference of the growths occurred during the periods (7 , #;,1) and
(fi1. fn2) Tespectively. An exact estimate of underestimate or overestimate of N(7,.,) can

be obtained from this relationship observing the (rend of AM{ M)
. .

The formula for

N(tpw) 15 given by

”

N(twy) = N(t,) + % A N(ina) + 8> N1, o) | k<h (2.9.4)

Technigque C
A{N() NUo) b, AUNODYIN() Y, NN(L)IN(R)Y,

) )are the relative growths in the intervals (1, 1), (n, 1),

............... AN YN

........... s (1o, 1) respectively.
These are known. In this case,

., _ k AIV(IIhl )
‘/\,‘(’qu) /] N(tll-])

-N(’n) + bN(’n) . (295)

( k<h).
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would be an exact estimate or underestimate or overestimate of P(tn:) depending on the

trend of relative growth.

Technique D
AN OVALM)] is the ratio of growth during (7", fia) and (4 | f;)). Here the

estimate off N(ryp) is provided by

M) - k(AN My (2.9.0)
P I AN(1,.2)

Technique E
An exact estimate or underestimate or overestimate of N(1,.) can also be

obtained from the nature of the trend of the ratio N(,.1)/N(1,). Here the estimate Pltnix)

of M(t,.x) is given by

A KN(,In-]])\:('/‘(‘f/)h) A M(tnar) .N(In) for k<h
<
M= N(m)
—_— n for k=/ .
N M) | or k=h (2.9.7)

'I‘cchr;igttc F

AN(1) is the change in total population during the interval (1 , 1+h). So, AN(OYh is
the change in total population in unit time during the period (7, 1+h) . Let us divide each
interval (7, f+h) into (2m+1) equal subintervals. We assume that the amount of change
AN(1)/(2m+1) occurs at the (m+1 )™ subinterval of each interval. To find out the changes
in the first and the last subintervals of an interval one can use the average change in the
th

interval i.e. the change in the (m+1)" subinterval. One can see that

—mrl N AN(t)= ot D |
(2m+1) AM) (2m+1)" : 2+ | ) (2.9.8)

1
is the change in the subinterval ( ti, ti+ 5777 and that

2mh (m'1) (mt 1)

oAty marrrotit ) = (Zr Ty AMOAZEFTY™ ANM(L-h) (2.9.9)

R e
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2mh
is the change in the subinterval ( tit (2,4 1y - tith) .

Therefore |

X h
N(tar) = N(t, +~{M \N(t-h) 2 9

would be an exact estimate or underestimate or overestimate of N(1,.) depending on the

5 trend of the changes.

§ 2.10 Population -- Point Projection From Interval Projection:

In the method of determining projected interval on the total population in a

region innovated by Chakrabarty and Barnah (Ref: 23), projected interval is determined

from the underestimates and overestimates of the same. The underestimates and

overestimates, used there, suffer from errors. It has been thought of that by eliminating

the errors involved there, it might be possible to obtain projected point value on the

g same. Hence, due to the necessity of some method of projecting point value on total

population of the whole region, an attempt has been made to innovate a method of

projecting point value on total population in the whole region based on underestimates
and overestimates of the same. The method is outlined below.

The following notations have been used here:
N(r) = Numiber of persons in g region af (ime t
N'(1) = Number of Persons in a region at time t
l/{/(l) = Point estimate of N(/).

NY(ty = Under estimate of N(#) based on the method ; (i=

v . 1,2, ... . , ).
N, (1) = Over estimate of N(r) based on the method j (j=1. 2 ")
Automatically |
NI = Ny + &) (2.10.1)

for some <,(¢)

where ()= 0.

/\() AT .
Similarly.  Ni(O = N - €/(0) (2.10.2)
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for some &/(1)
where & ()2 0.

Now consider the sum

mn
s= T M (2.10.3)

=1

//\\/”(/) fori=1,2,3,......... .

where /\,/\,"(/) = N
N1y fori=m+1 m+i, .. .. , mt+n
Think of the averages
min
A= AT - (2.104)

min-l !
IRa

for 7= 1,2,......... Lt

Here, 4, is the average of ali estimates N'(1) except the estimate N*(1) .

The sum S can be expressed as

' , m mn
v T - —
§= o N+ €, e - ) - (2.10.5)
m 1"
which=» A = N'(n + ((Xe - e }lmin (2.10.6)
1o i=mil

N . the averape of all the estimates (under and over). Since each of the

min

where A=

. et nd | . . . .
CrTors €16, €3, o Epin. 18 POSItIVE, the 2" expression in the right hand side of

cquation (2.10.6) may be very near to zero. Thus

(2.10.7)

ual to NM(1), it is to be noted that it may not be exactly

Ny = A
Though A4 is approximately eq
equal to N'(r) .
Thus the problem is £0 determine the true value of unknown N7(1). To do this let us deal

with the averages
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/1/‘ ,".‘...‘ .o .‘../’m.-‘

. ,",,, (7]

By the same logic as in the case of A,

A= Ny =12 kN (210.8)
If A =Ny, v
then A, A-..... Ama. A must be identical i.¢

/IIL/IZ—" ......... '“/Ilrf;:/’l::‘l T —A'"'"

and vice versa.

Thus if it is found that all 4, s are equal then that common value of 4, will be the value of

N'(1) . However if not, the same process, may be repeated upon
fl‘\‘/’:, ey /‘1"], Amvl N e ‘A,” ;]

treating them as estimates (some of which are underestimates and the others are

overestinies) of /V](f) until stabilized value of (h

value will be the required value of V(1.

¢ averages are abtained. The stabilized

Possible situations of stabilized value of aver

let

age
iy

/.= the minimum of over estimate Ny

7

and A = the maximum of underestimate N"'(I)

Then the interval

(l‘s AI)
is the projected interval for A (1) (Ref. 23).

Now, there arc three possible situations regarding the position ¢f the st

abilized value.
(1) Stabilized value falls below the lower limit of the projected interva|
(2) Stabilized value falls above the upper limit of the Projected interva]
(3) Stabilized value falls within the projected interva]

It is obvious that the actual valye (true point vay

corresponding projected interval and hence the 'corresponding Projected valye t fall
. d must fa

within the same. Thus, one computed poin value can be treated ag

. . . an acceptable
projection if it falls within the same. Thus in (he third sity

. ' ation, the stabilized valye can
he treated as the corresponding projected vaye though may not be exactly equal to tl

) . \ ual to the
anses due to the effect

f (he under cstimates used. Similarly the

, lue. The first possibilit
nding actual value. SSionity
corresponding of extreme value

jvalues o “econd Possibility arises due

the effect
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of extreme value/values of the overestimates used. Thus in any of these two situations
the process may be repeated using the estimates excluding the associated extreme value

till the third situation is obtained in which situation the stabilized value can be treated as

the projected point value.

§ 2.11 Some Existing & Commonly Used Laws of Population Growth:
* Here, two commonly used formulae for estimating / projecting the total

population of a region have been mentioned with the respective methods of fitting of

them to observed data.
A very satisfactory formula for estimating / projecting total population of a

region is represented by the logistic curve (Ref. 63, 64, 99, 100, 106 & 110). The curve

is of the form

MR 1) 5= e (2.111)
1 exp{r.(fi-n)

where .
(i) N(R : 1y is the total population of the region Runder study at time ¢,

(ii) 1. 1s the upper limit of N(R: 1),
(i)  Pis the value of 7 for which N(R: 1) is 1. /2

and (iv) r is the value of

when N(R: 1) = L.
Here /., r and f# are the parameters of the curve which are to be determined on the basis

of the observed data. Putting
Y= 1/ MR,

o= 1/ MR -1,

A b exp(n)]
& 1 oexp(r)
n in the form

. the logistic curve can be writte
Yoo A BN, 22
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Thusif(/ , Ny, (1=1,2, ... , 1) are the observed data on {7, N(R: 1)} then the two

constants A and B can be estimated by the equations

n |

/f—[[Z(),-))}/\ ARSI (2.11.3)

& A=V -RY (2.11.4)
From the estimates of the constants 4 and R, the estimates of the parameters /., r can be

obtgined. Finally, the parameter /# can be cstimated [rom the equation

n-1

p= (1/u», Z log(z - 1) + (n-1)/2 (2.11.5)

| where 7, - 1/ N, .

This method of estimating the parameters of the logistic curve is due to hades (Ref.
110),

~ Another formula lor estimaling / projecting total population of a region is
represented by the exponential curve (Ref. 63, 64 & 106) which is of the form
NR 1) = jexp(-2n). (2.11.6)
0020

where y and A are the parameters which are (o be determined on the basis of the
ubsuvcd data. Putting

vi= log MR: 1)
& v=logu
the exponential curve can be written in the form
Vim v 2.11.7)
Thus i (/L Ny, (- | - 1) are the observed data on {1, MR - )} then the two
constants v and A can be estimated by the equations

n

Z Y=gy Xi / (2_11,8)
[

-1

2 n ’“’ _ n ) n 2 “119)
| 2 i Vg ! ; ! (’7

where V= log N,

F'rom the estimates of the constants v an estimaie of the parameters |1 can be obtained

from the equation
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v=logu ‘
(2.11.10)

§ 2.12 Testing of Goodness of Fit:
A very powerful test for testing the significance of the discrepahcy betw

] ' een

reory and experiment, popularly known as Chi-square Test of Gooduess of Fit

) , ‘ i o 1 ) [4
piven by Professor Kard Pearson in 1900 (Refl 12, 91,92, 127 & 129). It bl e

! B . . s e <7}, cnabies one (o

find if the deviation of the experiment from the theory is just by chance or is it really d
| . : Y5, - s it really due

to the inadequacy of the theory to fit the obscrved data.

3 : f) M . :

IfO, (i=1,2,3, ... , ) is a set of observed (experimental) frequencies

and 1y, (i=1,2,3, ... _m) is the set of the corresponding expected (theoretical
. ai or

hypothetical) frequencies then Kar/ /

7= 13 {co, -FEV}E]. 2.12.1)

searson’s chi-square (abbreviated as Xz) given by

(S 0=3 F)
71 . r=1

follows chi-square ()(1) distribution with (n-1) d.f. (Ref. 91,92 & 127),

Thus, the null hypothesis
« H, : The discrepancy petween the observed frequency and the theoretical

frequency

is not significant "

apainst the alternative hypmhcsiﬂ

«H, : The discrepancy petween the observed frequency and the theoretical

frequency

is significant ”
¢ the significance level a
nce level a is less than or greater than the corresponding

is retained or rejected a according to the calculated value of x?
for (n— 1) df at the significa

of y* for the same d.f. and at the same significance level.

theoretical value

stic Forccasting of Temperature and Rainfall:

re and rpintall ar
Temperature of a location on the earth surface
Sa

§ 2.13 Probabili

Temperalts

¢ two ol the major fuactors that determine (i
¢ the

weather and the climate of a location.
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variable, which changes over time. 1t forms a time scries where the period of the smallest
periodic component is a day and the period of the highest periodic cecmponent in normal
situation is a year. It may or may not have cyclical component. Of course, random factor
always effects upon it and hence it contains the random component. Similar is the case of
rainfall also.
The following characteristics together can give a picturc of temperature at a
locatjon in a month:
(i) Mean Maximum Temperature (monthly).
(i) Highest Maximum Temperature (monthly).
(iit) Mcan Minimum Temperature (monthly).
and (iv) Lowest Minimum Temperature (monthly).
Similarly, the following characteristics together can give a picture of rainfall
at a location in a month:
(i) Total Rainfall (monthly).
(i) Heaviest 24 Hours Rainfall (monthly).
and (iii) Number of Rainy Days (Monthly).
The discovery of normal probability distribution, discovered by Craiss (Ref.
50, 60, 115 & 117), is the most significant discovery in the theory of statistics. It has
been thought of that it may be possible to apply the area property of normal distribution
in_developing the literature on how to know whether there exists any significance
assigriable cause in a region which forces the temperature of the region to be changed as

well as on how to determine forecasted interva! value with desired probability (i.e. with

desired confidence). Similar is the case for rainfall also. This literature, developed, has

been thrown below. The literature, thrown below, is for the mean maximum temperature

only. The literatures for the other characteristics are similar with this,
§ 2.13.1 Method of Obtaining Forecasted Interval:

et ¥ be the random variable that represents the mean  maximum

temperature at a location. The maximum femperature at a loeation in a particular day in
! < " A

year should remain the same in cvery successive year provided there is no any assignable
cause of variation. But, assignable cause/causes of variation like rainfall. winds. clouds
elc. may appear In the same day of the successive years that influence upon the

emperature Qo). unq]'ysjs of the daily data on temperature cannot vield valid result®
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However, monthly data on sucl: variablc can estimate this type of causes of variation.

Hence, it would be reasonable to analyses monthly data instead of daily data.

Let
Y, = the mean maximum temperature observed at a location in the month A
of the
year 'y (i= 1,2, ... A2 & j=1,2, ).
For fixed 7, the values of V,, (=1, 2, ............. , 1) should be constant if there exists no

cause of variation in Y over year. However, random cause of variation always exists
Thus if no assignable cause of variation exists in ¥ over year then for fixed / we have
Y, =pu+e,
where o= the true value of the mean maximum temperature
& r, the error associated to ¥, due to random cause (i.c. chance cause) of

variation.
The common assumption of &, is that ¢, s are independently and identically distributed

N(O, af)variates where the notation N (O, 0;) represents normal variate with mean 0

. hl
and variance o).

Now,
since ¢, isa N(O, o,j)varialc

-

therefore, ¥, - s isa N(O,(f,j) variate

which implies
(1) P{(Y,; - u) o, < 1.96}=095,
(ii)
& (i) P{(Y, - n Yo, < 3}=009973

P{(Y, - u) o, < 2.58}=099

Therefore, the intervals
- IA()()O','. < Yn_"/: 1 + ]-()()O",_. .

()
(11) J 2580, <K< ut 2.580,
& (iiy  H-30 < Vo< pn +30,

99% & 99.73% confidence intervals of ¥, | the mean

, . .
are respectively the 95%, '
at the location considered for the month ‘> These mean that (i)

Maximum temperature
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95% or more, (ii) 99% or more & (iii) 99.73% or more of the observations ¥, (j = 1, 2,
U . ) will fall within (and consequently (i) 5% or less, (ii) 1% or less & (i)
0.27% or less of the observations ¥, (j = 1. 2, .. ... ... n) will fall outside) the
ntervals

(|) (/I - ]'()()()"._ .M ] l.‘)()()‘:' ) .

(1) (p0 -258¢, , 1 1+258¢a,)

& (iii) (g =30, , u+3oc,)
respectively. .

Conversely, if it is found that (i) 5% or less, (ii) 1% or less & (iii) 0.27% or
less of the observations ¥, (G 120 00 o lloutside (or equivalently (1) 95% or
more, (i) 99% or more & (iii) 99.73% or more of the observations Yy (= 1,2,
............. , 1) fall within) the intervals

() (40 -19a, | 4 +1960,),
(ii) (g0 =258, . 4112580, )
&G (p4-3o, | 413 ,)
respectively where
p=Emeanof ¥, (=12 ..
& o, =varianece of V', (j=1.2.
then
(1) P{(Y, - Vo, <106} - (.95,
(i) PUY, - p) o, ~ 2581 =00y
& (i) PY, - p Y, <3} 09973
These mean that the variable (¥, - 4) is a N(O, o‘) variate which further means that
the variable #, where
S P,
1S N(O, o) variate. Hence ¥, can be represented by
o,

where 41 = the mean of ¥y g=1,2, ... . )
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& &, = the error associated to I,

with the assumption that ¢, s are independently and identically distributed

N (O, o ) variates.
This implies that there exists no assignable cause of variationin ¥ (j = 1,2, ............. .
nyovertheyearsj(/=1,2,............. , 1. Consequently, one can conclude that if the

current condition prevails in future then these 95%, 99% & 99.73% confidence intervals

of ¥, will be the corresponding projected confidence intervals of the mean maximum
temperature at the location for the month */". '

Some Notes

() Here,

C

= Variance of ¢,

Q

= Variance of (¥ - ), since Yy-u =g,
= Variance V'

'huy o is the variance ol ¥y also.

(i) Sinéc for fixed ¢ there is no more value of Fy besides the values of ¥ (f = 1, 2,

, n) if the period from the year ‘1° to the year ‘»’ is considered, the values of

uand o will be

| [
TR

1

respectively.

§ 2.14 Analysis of Variance Technique and Analysis of Data on

Temperature & Rainfall:

Here also the same characteristics of temperature and of rainfall mentioned

above have been considered.

The. analysis of variance, discovered by lisher (Ref 31, 49, 102, 103 &
L13), is o siatistical ool that can be used 1o hnow whether there existy any significance



oge . . ~ . . 1 52
Report of the Project “Probabilistic Forecasting of Time Series

assignable cause in a region which forces the temperature of the region to be changec'i. It
may be possible to apply this tool in determining forecasted interval value with desired
‘probability. Similar is the case for rainfall also. An outline of the literature of this tool
has been thrown below. The literature, thrown below, is for the mean maximum

temperature only. The literatures for the other characteristics are similar with this
el

A)

¥y = the mean maximum temperature observed at a location in the month 7" of the
year ‘7 (i=1,2, ......... A2 & j=1,2, , 1).

.............

There are two sources of variation accurred in the data viz. (i) Month and (ii)Yecar.

(It is to be noted that these observations constitute the concerned population for the
period from the year *1° o the year ")

The technique of analysis of variance, discovered by Nirr Ronald A. I<isher (1890 -1962),

can be applied to these data to test the significance of differences

(i) among the efToets of different months over the mean maximum temperature
(11) among the cffects of the years 1,2, ... . .. . It over the same.

The mathematical model is
)'u =pu+aq, -+ ,[fj +e,

where - z= the constant that would have been happened had there been no any other

cause of variation,

tr the eleet of canses ol variation ocenned in the month *4°,

f3,= the effect of causes of variation in (he year 4’
& ¢, = the random effect.

The common assumption of &, viz. the assumption that

&€, obeys N(OO‘,) law
is retained here.

The least squares estimates /1 , ¢ & A, of u,

@ & fi, respectively are found to be
Il/ = )/’(“l k) al = .)710 & ﬁl - _}.-'.“J
The format of the table for performing

table (Table-2.14.1}.

analysis of variance js shown in the following
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Table-2.14.1
(Analysis of Variance Table)
Source | Degrees | Sum  of | Mean squares Calculated value of | Tabulated
of squares I7 statistic value F
freedom . | statistic

Month ™ [ T e Tl St 8"

with 11 & 11(n-1)
degrees of freedom
Year -1 52 = st =82n 528t

with »n & 11(n-1) -
degrees of frecdom

Error (n-1) | S2= set = 821 1 n-1)
Total 12n-1 |8 = st =8770120-1)

(It has been established that the error mean square is an unbiased estimate of G2.)

Now. “the difference among the cffects of causes of variations over the
years is insignificant” implies that there is no assignable cause(s) of variations (in the
data) that arise duc to the change of years. Thus if the difference among the effects of
causes'of‘ variations over the years is found to be insignificant then one can conclude that
there is no assignable cause(s) of variations (in the data) that arise due to the change of
years. In that case we can conclude that the current picture of the mean maximum
temperature will prevail in future.

I the said difference is found to be significant then we can conclude that

thore exiats assignable cause(s) ol varintion that oceurs due to change in years. However,
before drawing this conclusion, we are to test the difference between the efTects of the
two years in each pair of the years. This is necessary due to the reason that the analysis
of variance may show significance of difference among the years due to the existence of
(he significance of difference between one pair of years only. If this situation is found,

analysis of variance is to be carried out again on the observations excluding those that

correspond to this pair of years. Of course, this is not to be repeated more than once. The

method of testing the significance of the difTerence between two means has been outlined

below.

§ 2.14.1 Testof Difference of Means:
- A famous statistician W. S. Gossel, who wrote under pseudonym (prename)

of Student defined a test statistic known as 7 and investigated its sampling distribution,
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somewhat empirically, in a papcr entitled “ The Probable crror of the Mean
published in 1908 (Ref. 1 19) while another statistician Professor 1. A. Fisher defined
the same statistic ‘¢ in a more general way and gave a rigorous proof for its sampling
distribution in 1926 (Ref. 97). This statistic has a lot of applications one of which is the
“testing of the significance of difference between two means” that has been outlined

below,

Suppose, we want to test if two independent samples
{X\, b < T , xm}

& b/]., Vo, e . _V,,}
of sizes m and n have been drawn from two normal populations with means fix and g

respectively. Then for testing the null hypothesis
Ho: =t

the test statistic ¢, under the assumption that the population variances are equal, is given
by

(x -y )= (e i)

- s o o > Ve e . Yy O 8 4 e o e

S{my+ (1/m)} v

where

— m

= (l/m)z X,
[

vo= Y p

” n

and §* = U(m+ 11—2){ Z (o, -~ x ) + Z (y, - )2\"
¢ ! ] - "

Here, 1 follows “7* distribution with (m +n - 2) d.f (Ref. 97 & 119).




