2013

STATISTICS

(Major)

Paper: 2·1

(Numerical and Computational Techniques-I)

Full Marks: 60

Time: 2½ hours

The figures in the margin indicate full marks for the questions

- Choose the correct answer:
 - (a) The third difference of zero of third degree is
 - (i) zero
 - (ii) 1
 - (iii) 6
 - (iv) None of the above
 - (b) The nth difference of constant is
 - (i) 1
 - (ii) zero
 - (iii) n!
 - (iv) None of the above

A13-300/1230

(Turn Over)

 $1\times7=7$

- (c) "The divided difference is a symmetrical function of all the arguments involved and follows that for any function, f(x) the value of a divided difference remains unaltered when any of the arguments involved are interchanged."
 - (i) The statement is True
 - (ii) The statement is False
 - (iii) The statement is neither True nor False
 - (iv) None of the above
- (d) The correct relation is
 - (i) $\Delta \equiv 1 E^{-1}$
 - (ii) $\nabla \equiv 1 E^{-1}$
 - (iii) $E^{\frac{1}{2}} \equiv 1 \nabla$
 - (iv) All of the above

Here ∇ and E denote the backward difference and shift operators, respectively.

- (e) Simpson's one-third rule is used
 - (i) for numerical integration
 - (ii) to determine the roots of a polynomial
 - (iii) to solve both (i) and (ii)
 - (iv) None of the above

- (f) Regula falsi method is used for
 - (i) the determination of the roots of a polynomial
 - (ii) solution for differential equation
 - (iii) numerical integration
 - (iv) None of the above
- (g) A difference equation is an equation which involves
 - (i) independent variable
 - (ii) dependent variable
 - (iii) the successive differences of the dependent variable
 - (iv) All of the above
- 2. Answer the following:

 $2\times4=8$

- (a) Prove for positive integer m, $\Delta^2 x^{(m)} = m(m-1)x^{(m-2)}$
- (b) Prove the operator relation, $(1 + \Delta)(1 \nabla) = 1$
- (c) Solve: $u_{x+1} - u_x = (x^2 - 2x)2^x$
- (d) Find the real root of $2x \log_{10} x = 7$

Answer any three questions:

 $5 \times 3 = 15$

3. Show that

$$B(m+1, n) = (-1)^m \Delta^m \left(\frac{1}{n}\right)$$

where m is a positive integer.

- 4. Find by the method of iteration a real root of $2x - \log_{10} x = 7$.
- 5. Evaluate $\int_0^1 \frac{dx}{1+x}$ correct up to five decimal places by Euler-Maclaurin formula.
- **6.** Solve :

$$u_{x+1}u_x + (x+2)u_{x+1} + xu_x = -2 - 2x - x^2$$

7. Assuming Bessel's interpolation formula, obtain the following result:

$$\frac{d}{dx}\frac{y}{x} = \Delta y_{x-1/2} - \frac{1}{24}\Delta^3 y_{x-3/2} + \cdots$$

Answer any three questions:

- 8. State and derive Newton-Gregory formula for backward interpolation.
- 9. State and derive three methods for Lagrange's interpolation formula for unequal intervals.
- A13-300/1230

Continued)

- 10. State and derive Laplace-Everett formula for interpolation.
- 11. Explain how Newton-Gregory formula can be used to carry out inverse interpolation of second order. Show that a good approximation to the interpolating factor, x will be given by

$$x = \frac{f_x - f_0}{\Delta f_0} \left[1 - \left\{ \frac{f_x - f_0}{2(\Delta f_0)^2} \right\} \Delta^2 f_0 \right]$$

12. Obtain approximations to the value of or evaluate

$$\int_0^6 \frac{dx}{1+x^2}$$

by applying (a) Weddle's rule, (b) Simpson's one-third rule and compare the results with the true value, $tan^{-1}6 = 1.406$.

- 13. (a) Solve the equation $u_{x+2} 4u_x = 9x^2$.
 - Show that

A13-300/1230

$$\Delta O^m - \frac{1}{2} \Delta^2 O^m + \frac{1}{3} \Delta^3 O^m - \cdots O$$
, if $m > 1$.

 $\star\star\star$

(c) (i) Show that

$$\int_{a}^{b} (x-a)^{l-1} (b-x)^{m-1} dx = (b-a)^{l+m-1} \beta(l, m)$$

- (ii) Write a note on Lagrange's undetermined multipliers.
- (d) (i) Show that if 2x+3y+4z=a, the maximum value of

$$x^2y^3z^4$$
 is $\left(\frac{a}{9}\right)^9$

(ii) Show that

$$\int_0^p x^m (p^q - x^q)^n dx$$

$$= \frac{p^{qn+m+1}}{q} \beta \left(n+1, \frac{m+1}{q} \right)$$

if
$$p > 0$$
, $q > 0$, $m + 1 > 0$, $n + 1 > 0$.

(e) (i) Prove that

$$\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} = \beta(m, n)$$

(ii) Prove that

$$\int_0^\infty \frac{(x^{m-1} + x^{n-1})}{(1+x)^{m+n}} dx = 2\beta(m, n)$$

(f) (i) Prove that

$$\Gamma(n+1)=n! \quad \forall n\in N$$

(ii) Show that, for m, n > 0

$$\int_0^1 \frac{x^{m-1} (1-x)^{n-1}}{(b+cx)^{m+n}} dx = \frac{\beta(m, n)}{(b+c)^m b^n}$$

 $\star\star\star$

3 (Sem-2) STS M 2

2013

STATISTICS

(Major)

Paper: 2.2

(Mathematical Methods—I)

Full Marks: 60

Time: 2½ hours

The figures in the margin indicate full marks for the questions

1. Answer the following:

 $1 \times 7 = 7$

- (a) State the Taylor's expansion for one variable.
- (b) Define an explicit function.
- (c) In connection with the Reimann integral, define the term 'refinement'.
- (d) Define the Gamma integral.
- (e) State when a function, f(x, y) is said to tend a limit, l.
- (f) If $f(x, y) = 2x^4 3x^2y + y^2$, find $f_{xy}(x, y)$ at (0, 0).
- (g) Define the improper integral.

A13-300/1227

(Turn Over)

2. Answer the following:

 $2\times4=8$

- (a) Give the geometrical interpretation of Rolle's theorem.
- (b) Show that the function defined by $f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$

is not integrable in any interval.

- (c) Investigate the continuity at (1, 2) $f(x, y) = \begin{cases} x^2 + 2y & (x, y) \neq (1, 2) \\ 0 & (x, y) = (1, 2) \end{cases}$
- (d) Define beta integrals of 1st and 2nd kinds.
- 3. Answer any three questions:

5×3=15

(a) If

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}; & (x, y) \neq (0, 0) \\ 0; & (x, y) = 0 \end{cases}$$

show that both the partial derivatives exist at (0, 0) but the function is not continuous thereat.

(b) Test for uniform convergence, the sequence $\{f_n\}$, where

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

for all real x.

(c) Show that

$$\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx = \beta(m, n)$$

- (d) State and prove the Taylor's expansion for two variables.
- (e) If

$$u_1 = \frac{x_2 x_3}{x_1}, \ u_2 = \frac{x_1 x_3}{x_2}; \ u_3 = \frac{x_1 x_2}{x^3}$$

prove that $J(u_1, u_2, u_3) = 4$.

- **4.** Answer any *three* questions : $10 \times 3 = 30$
 - (a) (i) Show that if f is bounded and integrable on [a, b], then |f| is also bounded and integrable on [a, b]. 5
 - (ii) Prove that

$$\int_{-1}^{1} |x| dx = \lim_{\mu(p) \to 0} S(p, f) = 1$$
 5

- (b) (i) Show that a function which is differentiable at a point, possesses the first-order partial derivative thereat.
 - ii) Show that, if

$$f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}; & (x, y) \neq (0, 0) \\ 0 & ; & (x, y) = (0, 0) \end{cases}$$

then the function possesses partial derivatives at (0, 0).