2017

STATISTICS

(Major)

Paper: 1.1

(Descriptive Statistics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions as directed (reasoning is not necessary): 1×7=7
 - (a) Write whether true or false:"Data obtained from physical experiments are secondary data."
 - (b) Is it true that population is defined as a set of human beings?
 - (c) Is mode a partition value?
 - (d) Is coefficient of variation invariant of change of scale?

to symbological and

problemedian a shirth to ename a resulte

HE STANT SET OF THE PARTY OF THE PARTY.

- State the range of multiple correlation 2017 coefficient.
- Define geometric mean of the values x_1, x_2, \dots, x_n in terms of arithmetic mean.
- State the values of β_1 and β_2 for a symmetric distribution.

| Descriptive Statistics |

2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Mention two limitations of statistics.
- (b) If x_i / f_i $(i = 1, 2, \dots, n)$ is a frequency distribution and $u_i = \frac{x_i - a}{h}$, then show that $\bar{x} = a + h\bar{u}$. (Symbols have their usual meanings.)
- (c) If r_{XY} is the coefficient of correlation between X and Y, then interpret the cases where-

(i) $r_{XY} = +1$;

(ii) $r_{XY} = -1$.

Sheppard's corrections for moments for grouped data.

CHARGE OF SENIAR

- 3. Answer any three of the following:
 - (a) What is a statistical table? Mention with explanation the main parts of a statistical table.
 - Define arithmetic mean of a discrete frequency distribution. Show that the algebraic sum of the deviations of observations for the frequency distribution is minimum when taken about mean.
 - Define the following:
 - (i) Coefficient of correlation
 - (ii) Regression coefficients
 - (iii) Partial correlation coefficient
 - (iv) Multiple correlation coefficient
 - (v) Correlation index
 - (d) What are partition values of a distribution? Explain (with definition) median and quartiles as partition value.
 - Obtain the normal equations for fitting of the 2nd-degree parabola $Y = a + bX^2$ on the basis of the n pairs

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ of values of (X, Y).

5×3=15

- 4. Answer either (a) or (b):
 - (a) Define the following with suitable examples: 2×5=10
 - (i) Qualitative and quantitative data
 - (ii) Normal and ordinal data
 - (iii) Cross-sectional and time-series
 - (iv) Discrete and continuous data
 - (v) Frequency and non-frequency data
 - (b) What are primary data and secondary data? Clearly mention various sources of secondary data. 2+2+6=10
- 5. Answer either (a) or (b):
 - (a) Define raw moments, standard moments and factorial moments of a set of non-frequency numerical data.

 Express the 4th-order standard moment in terms of raw moments. 2+2+2+4=10
 - (b) Define standard deviation of the observed values x_1, x_2, \dots, x_n . If $\sigma_1^2, \sigma_2^2, \dots, \sigma_p^2$ are the variances of p different sets containing n_1, n_2, \dots, n_p observed values respectively, then find out the variance of all the $n_1 + n_2 + \dots + n_p$ observed values. 2+8=10

- 6. Answer either (a) or (b):
 - (a) Explain the principle behind the method of least squares of fitting a mathematical curve y = f(x) to a set of numerical data viz. $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ on (x, y). Find the normal equations for fitting of the mathematical curve

$$y = a + bx + cx^2 + dx^3$$

to the data on (x, y) mentioned above.

4+6=10

- b) Write notes on any *two* of the following: 5×2=10
 - (i) Skewness and Kurtosis
 - (ii) Orthogonal polynomials
 - (iii) Graphic representation of data

erom mue a gra 2 0 1 7 lidadore entr

STATISTICS

(Major)

Paper: 1.2

(Probability—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed:
- 1×7=7
- (a) If A and B are two events, then the probability of occurrence of at least one of them is given as
 - (i) P(A) + P(B)
 - (ii) $P(A \cap B)$
 - (iii) $P(A \cup B)$
 - (iv) P(A) P(B)

(Choose the correct option)

course of pr. two diseases routed in the course less

more and to war that the track (2001) -

- (b) With a pair of dice thrown at a time, the probability of getting a sum more than 9 is
 - (i) $\frac{5}{18}$
 - (ii) $\frac{7}{36}$
 - (iii) $\frac{5}{16}$
 - (iv) None of the above

(Choose the correct option)

(c) For two events

 $P(A) = P(A / B) = \frac{1}{4}, P(B / A) = \frac{1}{2}$ find the value of P(B).

(d) For a continuous random variable X, the value of the probability P(X = c), for all possible values of c is _____.

(Fill in the blank)

- (e) If X assumes only positive values and E(X) and $E(\frac{1}{X})$ exist, then $E(\frac{1}{X}) \le \frac{1}{E(X)}$. (State True or False)
- (f) Define conditional expectation E(X/Y) for two discrete random variables X and Y.
- (g) A random variable may have no _____ although its moment-generating function exists.

(Fill in the blank)

2. Answer the following questions:

2×4=8

- (a) Define complement of an event. If \overline{A} is the complement of event A, then show that $P(\overline{A}) = 1 P(A)$.
- (b) Explain the term 'conditional probability'. Find P(B / A) if A and B are independent events.
- (c) State the important properties of distribution function.
- (d) Can $P(s) = \frac{2}{1+s}$ be the probability-generating function (pgf) of a random variable? Give reasons.

3. Answer any three of the following questions:

5×3=15

- (a) Distinguish between mutually exclusive events and independent events. Show that two independent events each having non-zero probabilities cannot be mutually exclusive.
- (b) Three persons A, B and C in order toss a fair coin. The first one who throws a 'head' wins. If A starts, find their respective chances of winning. (Assume that the game may continue indefinitely).

- In answering a question on a multiple choice test, a student either knows the answer or he guesses. Let p be the probability that he knows the answer and 1-p the probability that he guesses. Assume that a student who guesses at the answer will be correct with probability 1/5, where 5 is the number of multiple choice alternatives. What is the conditional probability that a student knew the answer to a question given that he answered it correctly?
- Show that for two continuous random variables X and Y, E(X + Y) = E(X) + E(Y); provided the expectations exist.
- The joint probability distribution of two random variables X and Y is given by

$$f(x, y) = 4xye^{-(x^2+y^2)}, x \ge 0, y \ge 0$$

Find the marginal distributions and check whether X and independent.

- 4. Answer any three of the following questions: 10×3=30
 - (a) If A_1, A_2, \dots, A_n are n events, prove that $P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le n} P(A_i \cap A_j)$ $+\sum_{1\leq i\leq j}\sum_{k\leq n}P(A_i\cap A_j\cap A_k)-\cdots$

What will happen to this relation if all the events A_1, A_2, \dots, A_n are mutually disjoint?

 $+(-1)^{n-1}P(A_1 \cap A_2 \cap \cdots \cap A_n)$

- (i) Define pairwise independence and (b) mutually independence of events. A balanced die is tossed twice. Let A_1 be the event that an even number comes on the first toss, A2 is the event that an even number comes in the second toss and A_3 is the event that the same even number comes in both the tosses. Examine whether A_1 , A_2 and A_3 pairwise and mutually 11/2+11/2+4=7 independent or not.
 - (ii) If A and B are two mutually exclusive events and $P(A \cup B) > 0$, then show that

$$P(A / A \cup B) = \frac{P(A)}{P(A) + P(B)}$$

3

(c) State Bayes' theorem. Explain 'a priori' and 'a posteriori' probabilities in the context of this theorem.

> (ii) Suppose that event A can occur only along the event B which in turn can occur in n mutually exclusive ways B_1, B_2, \dots, B_n . Show that

$$P(A) = \sum_{i=1}^{n} P(B_i) P(A / B_i)$$
 3

- (iii) If n balls are placed at a random order into n cells, find the probability that exactly one cell remains empty.
- (d) Let X be a continuous random variable with probability density function given by

$$f(x) = \begin{cases} ax & , & 0 \le x < 1 \\ a & , & 1 \le x < 2 \\ -ax + 3a, & 2 \le x \le 3 \\ 0 & , & \text{elsewhere} \end{cases}$$

- (i) Determine the constant a.
- (ii) Determine F(x).
- (iii) Evaluate $P(\frac{1}{2} \le x \le \frac{3}{2})$.
- (iv) Determine E(x).

(Continued)

3

- A coin is tossed until tail appears. (e) What is the mathematical expectation of number of heads obtained?
 - (ii) Define conditional variance for discrete and continuous random variables.

For two discrete random variables X and Y, show that

V(X) = E[V(X/Y)] + V[E(X/Y)] + 2+4=6

- Define moment-generating function (f) (mgf). Show that the mgf of the sum of independent random variables is equal to the product of the mfg of the individual variables.
 - State the relation between the moments and cumulants. Are the cumulants independent of change of origin and scale of the variable? Explain.

Or

If X_1, X_2, \dots, X_n are independent random variables each assuming the values $0, 1, 2, \dots, a-1$ with probability $\frac{1}{a}$, then find the probability-generating function of the sum $S_n = X_1 + X_2 + \cdots + X_n$.

5

5