

(d) What is the polar equation of a circle with the pole as the centre?

(e) Under what condition does the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a pair of parallel straight lines?

(f) Write down the equation of the z-axis in symmetric form.

(g) What are the direction cosines of the normal to the plane $2x - y + 2z = 3$?

(h) Find the equation of the cone whose vertex is the origin and the guiding curve is $x = a, y^2 + z^2 = b^2$.

(i) Define the shortest distance between two skew lines.

(j) For what value of a , the transformation $x' = -x + 2, y' = ay + 3$ is a translation?

2. Answer **all** the questions: $2 \times 5 = 10$

(a) Find the value of k , if the equation $kxy - 8x + 9y - 12 = 0$ represents a pair of straight lines.

(b) If the axes are rotated through an angle $\tan^{-1} 2$, what does the equation $4xy - 3x^2 = a^2$ become?

(c) The axes of a right circular cylinder is $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ and the radius is 5. Find the equation of the cylinder.

(d) If e_1 and e_2 are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$.

(e) Find the equation of the sphere passing through the circles $x^2 + y^2 + z^2 = 9$, $2x + 3y + 4z = 5$ and the point $(1, 2, 3)$.

3. Answer **any four** questions: $5 \times 4 = 20$

(a) If by rotation of axes about the origin, the expression $ax^2 + 2hxy + by^2$ changes to $a'x'^2 + 2h'x'y' + b'y'^2$, then prove that $a + b = a' + b'$ and $ab - h^2 = a'b' - h'^2$.

(b) Deduce the polar equation of a conic with the focus as the pole.

(c) Find the equation of the tangent to the hyperbola $4x^2 - 9y^2 = 1$ which is parallel to the line $4y = 5x + 7$.

(d) Prove that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel straight lines if $\frac{a}{h} = \frac{b}{g} = \frac{c}{f}$.

(e) Show that the equation of the cone whose vertex is the origin and the guiding curve is $z = k$, $f(x, y) = 0$, is $f\left(\frac{kx}{z}, \frac{ky}{z}\right) = 0$.

(f) Find the equation of the director sphere of the conicoid $ax^2 + by^2 + cz^2 = 1$.

Answer either (a) or (b) from the following questions: $10 \times 4 = 40$

4. (a) (i) If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines equidistant from the origin, then show that $f^4 - g^4 = c(bf^2 - ag^2)$.

(ii) Find the lengths of semi-axes of the conic $ax^2 + 2hxy + by^2 = 1$.

(b) (i) Find the asymptotes of the hyperbola $xy + ax + by = 0$.

(ii) Reduce the equation $7x^2 - 2xy + 7y^2 - 16x + 16y - 8 = 0$ to the standard form. $5+5=10$

5. (a) (i) Show that the line $lx + my = n$ is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if $a^2l^2 + b^2m^2 = n^2$.

(ii) Show that the locus of the points of intersection of perpendicular is its directrix. $5+5=10$

(b) (i) If the chord PP' of a hyperbola meets the asymptotes at Q and Q' , then show that $PQ = P'Q'$.

10. (ii) If PSP' and QSQ' are two perpendicular focal chords of a conic, prove that

$$\frac{1}{PS \cdot SP'} + \frac{1}{QS \cdot SQ'} = a \text{ (constant).}$$

$Q = yz + zx + xy$ $5+5=10$

6. (a) (i) Deduce the expression of the shortest distance between the skew lines

$$\frac{x-\alpha}{a} = \frac{y-\beta}{b} = \frac{z-\gamma}{c}$$

$$\frac{x-\alpha'}{a'} = \frac{y-\beta'}{b'} = \frac{z-\gamma'}{c'}$$

(ii) A variable plane is parallel to the

given plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ and meets the axes at the points A, B, C respectively. Prove that the circle ABC lies on the cone

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0.$$

$5+5=10$

box (b) (i) Prove that if the plane $ax + by + cz = 0$ cuts the cone $yz + zx + xy = 0$ in perpendicular lines if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.

(ii) Prove that the locus of the poles of a tangent plane to the conicoid $ax^2 + by^2 + cz^2 = 1$ with respect to the conicoid $\alpha x^2 + \beta y^2 + \gamma z^2 = 1$ is the

$$\text{conicoid } \frac{\alpha^2 x^2}{a} + \frac{\beta^2 y^2}{b} + \frac{\gamma^2 z^2}{c} = 1.$$

$5+5=10$

7. (a) (i) Show that the director sphere of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is the sphere $x^2 + y^2 + z^2 = a^2 + b^2 + c^2$.

(ii) Obtain the equation of the chord of the conic $\gamma_r = 1 + e \cos \theta$, joining the two points on the conic, whose vectorial angles are $(\alpha + \beta)$ and $(\alpha - \beta)$.

$5+5=10$