

to evaluate the limit (i) (ii)

(ii) Show that the function f defined
and given $x \sin x = f(x)$ is
continuous to derivative

(ii) State and prove Goursat's Mean
Value Theorem

$x \sin x - x = 0$ if $x = 0$
for $x \neq 0$ $\lim_{x \rightarrow 0} \frac{x \sin x - x}{x} = 0$
is discontinuous at $x = 0$ (i) (ii) 4

2 (e) State Cauchy's Mean Value Theorem and prove it completely. Apply this theorem to show that $f(x) = 2x^3 + 1$ is differentiable at $a \in \mathbb{R}$ and that $f'(a) = 6a^2$. 2+4+4=10

If $f: I \rightarrow \mathbb{R}$ is differentiable on the interval I , then prove that

(i) f is increasing iff $f'(x) > 0, \forall x \in I$.

(ii) f is decreasing iff $f'(x) < 0, \forall x \in I$.

Hence prove that

$$f(x) = x^3 - \frac{9}{2}x^2 + 6x - 1$$

is decreasing in the interval $(1, 2)$.

1500

3 (Sem-3/CBCS) MAT HC 1/0

3 (Sem-3/CBCS) MAT HC 1/0

Total number of printed pages-7 (b)

Continuous in every point in \mathbb{R}

3 (Sem-3/CBCS) MAT HC 1 (e)

is a continuous function

swastas count

MATHEMATICS (e)

(Honours Core)

Paper : MAT-HC-3016

(Theory of Real Functions) (e)

Full Marks : 80

Time : Three hours (e)

The figures in the margin indicate full marks for the questions.

1. Answer the following questions : 1×10=10

(a) Does $\lim_{x \rightarrow 0} x \sin\left(\frac{1}{x}\right)$ exist ? (e)

(b) Define a cluster point of a set $S \subseteq \mathbb{R}$. (e)

(c) If $A \subseteq \mathbb{R}$ and $\phi: A \rightarrow \mathbb{R}$ has a limit at

a point $a \in \mathbb{R}$, then ϕ is bounded on

some neighbourhood of a ." Mention the

truth or falsity of this statement.

3 (Sem-3/CBCS) MAT HC 1/0 5 Contd.

(d) Give an example of a function which is discontinuous at every point in \mathbb{R} .

3 (Sem-3/CBCS) MAT HC 1

(e) Is a uniformly continuous function always continuous?

(f) Mention the points of discontinuity of the greatest integer function $f(x) = [x]$.

Basr : MAT-HC-3016

(g) Is a function continuous at a point always differentiable at that point?

08 : 1st M

(h) State Darboux's theorem.

(i) Write Taylor's series for a function f , defined on an interval I , about a point

01=01×10 $a \in I$, when f has all orders of derivatives at a .

(j) Write the fourth term in the power series expansion of $\cos x$.

2. Answer the following questions : 2×5=10

(a) Show that $\lim_{x \rightarrow a} x^3 = a^3$ by using the $\epsilon-\delta$ definition of limit.

3 (Sem-3/CBCS) MAT HC 1/G 2

(b) Prove that a constant function is continuous everywhere.

(c) Applying sequential criterion for limit

establish that $\lim_{x \rightarrow 0} x^2 \sin(1/x) = 0$.

(d) Find the points of discontinuity of the function $f(x) = \frac{(x-3)(x^2+1)}{(x+2)(x-4)}$. Is it bounded on $x = \sin x = (x)$?

(e) Evaluate the limit $\lim_{x \rightarrow \infty} \frac{\sqrt{x} - x}{\sqrt{x} + x}$, if it exists. uniformly continuous

3. Answer any four parts of the following : 5×4=20

(a) If $f : D \rightarrow \mathbb{R}$ and a is a cluster point of D , then prove that f can have only one limit at a if the limit exists.

(b) If $f : I \rightarrow \mathbb{R}$, where $I = [a, b]$ be a closed bounded interval, is continuous on I , then prove that f has an absolute maximum and an absolute minimum on I .

(c) State and prove Bolzano's intermediate value theorem. 1+4=5

3 (Sem-3/CBCS) MAT HC 1/G 3 Contd.

ai (d) If I is a closed and bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I , then prove that f is uniformly continuous on I .

(e) State Rolle's theorem and prove it. $1+4=5$

(f) Determine whether $x=0$ is a point of relative extremum of the function $f(x) = \sin x - x$.

4. Answer **any four** parts of the following questions: $10 \times 4 = 40$

(a) If $I = [a, b]$, $f: I \rightarrow \mathbb{R}$ is continuous on I and if $f(a) < 0 < f(b)$ or $f(a) > 0 > f(b)$, then prove that there exists a number $c \in (a, b)$ such that $f(c) = 0$.

(b) (i) If $I = [a, b]$ be a closed bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I , then show that f is bounded on I . 5

(g) (i) Find the derivative of $\sin x$ with respect to x .
(ii) Let $P(x)$ be a polynomial function of degree n . Prove that

$$\lim_{x \rightarrow a} P_n(x) = P_n(a). \quad 5$$

Value theorem.

(c) (i) If a function f is uniformly continuous on a bounded subset A of \mathbb{R} , then prove that f is bounded on A . 5

(ii) Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous on $I = [1, \infty)$. 5

(d) (i) If $K > 0$ and the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the condition $|f(x) - f(y)| \leq K|x - y|$, for all real numbers x and y , then show that f is continuous at every point $c \in \mathbb{R}$. Further, from it conclude that $f(x) = |x|$ is continuous at every point $c \in \mathbb{R}$. $4+2=6$

(ii) Show that the function f defined by

$$f(x) = \begin{cases} \frac{e^{\sqrt{x}} - 1}{\sqrt{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

is discontinuous at $x = 0$. 4

(e) State Caratheodory's theorem and prove it completely. Apply this theorem to show that $f(x) = 2x^3 + 1$ is differentiable at $a \in \mathbb{R}$ and that $f'(a) = 6a^2$. 2+4+4=10

(f) If $f: I \rightarrow \mathbb{R}$ is differentiable on the interval I , then prove that

(i) f is increasing iff $f'(x) \geq 0, \forall x \in I$.

(ii) f is decreasing iff $f'(x) \leq 0, \forall x \in I$.

Hence prove that

$$f(x) = x^3 - \frac{9}{2}x^2 + 6x - 1$$

is decreasing in the interval $(1, 2)$.

$$3\frac{1}{2} + 3\frac{1}{2} + 3 = 10$$

(g) (i) Find the derivative of $f(x) = \sin \sqrt{x}$ using the definition of derivative. 4

(ii) State and prove Cauchy's Mean Value Theorem. 2+4=6

(h) (i) Evaluate: $\lim_{x \rightarrow 0} \frac{x^2 - \sin^2 x}{x^4}$. 5

(ii) Prove that $e^\pi > \pi^e$. 5