

Total number of printed pages-7

Copy No. (6)

3 (Sem-1/CBCS) MAT HC 1

2023

MATHEMATICS (III)

(Honours Core)

Paper : MAT-HC-1016

(Calculus) (5)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions : 1x7=7

- (a) Write down the n th derivative of e^{ax} .
- (b) When a function f is said to be concave up on any open interval I ?

(c) Choose the correct answer :

Profit is maximized

(i) when marginal revenue equals marginal cost

(ii) when marginal revenue is bigger than marginal cost

(iii) when marginal revenue is less than marginal cost

(d) Write a difference between Disk method and Washer method.

(e) When a vector function $\tilde{F}(t)$ is said to be continuous at t_0 ?

(f) Write Kepler's second law of planetary motion.

3. Answer **any three** of the following : $5 \times 3 = 15$

(a) Answer the following using L'Hôpital's rule

(g) Evaluate $\int_0^1 \frac{1}{1+x^2} dx$

$$(i) \lim_{x \rightarrow \infty} \frac{Lt}{e^4}$$

2. Answer the following questions : $2 \times 4 = 8$

(a) Differentiate n times the equation

$$(1+x^2)y_2 + (2x-1)y_1 = 0$$

(b) Evaluate

$$\lim_{x \rightarrow +\infty} \sqrt{\frac{3x-5}{x-2}}$$

(c) Parameterize the curve $r = 2 \cos^3 \theta$.

(d) Determine the following vectors are orthogonal or not :

$$\begin{aligned} \tilde{u} &= 3\hat{i} + 7\hat{j} - 2\hat{k} \\ \tilde{v} &= \hat{j} - \hat{k} \end{aligned}$$

(b) A manufacturer estimate that when x units of a particular commodity are produced each month, the total cost (in dollars) will be

$$C(x) = \frac{1}{8}x^2 + 4x + 200$$

and all units can be sold at a price of

$$P(x) = 49 - x \quad \text{dollars per unit.}$$

Determine the price that corresponds to the maximum profit.

(c) Find the area of the top half ($0 \leq \theta \leq \pi$) of the cardioid $r = 1 + \cos\theta$.

(d) Find the tangential and normal components of acceleration of an object that moves with position vector

$$\bar{R}(t) = t\hat{i} + t^2\hat{j}$$

(e) Find the volume of the parallelepiped determined by the vectors

$$\bar{u} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\bar{v} = -4\hat{i} + 7\hat{j} - 11\hat{k}$$

$$\bar{w} = 5\hat{i} + 9\hat{j} - \hat{k}$$

Answer **either a or b** from the following questions : $10 \times 3 = 30$

4. (a) (i) State and prove Leibnitz's rule. $2+4=6$

(ii) If $y = \tan^{-1} y$ prove that

$$(1+x^2)y_{n+1} + 2xny_n + n(n-1)y_{n-1} = 0$$

4

(b) (i) Find the points of inflexion for the function

$$f(x) = 3x^5 - 5x^3 + 2$$

5

(ii) Determine whether the graph of the given function has a vertical tangent or cusp

$$f(x) = x^{\frac{2}{3}}(2x+5)$$

5

5. (a) (i) A regular pyramid has a square base of side L and its apex located H units above the center of its base. Derive a formula for its volume V . 6

(iii) Let D be the solid region bounded by the parabola $y = x^2$ and the line $y = x$. Find the volume of the solid generated when D is revolved about the line $y = 2$. 4

(b) (i) If $\phi(x) = \int_0^{\pi/4} \tan^n x dx$, show that

$$\phi(n) + \phi(n-2) = \frac{1}{n-1}$$

and deduce the value of $\phi(5)$.
2+3=5

(ii) Evaluate $\int \frac{\sin^4 x}{\cos^2 x} dx$ 5

6. (a) (i) Suppose an object moves along a smooth curve C with position function $\bar{R}(t) = \langle x(t), y(t), z(t) \rangle$, where $\bar{R}'(t)$ is continuous on the interval (t_1, t_2) . Then show that the object has speed $\| \bar{R}'(t) \|$. 3+3=6

(iii) Position vector of a moving object is $\bar{R}(t) = \langle e^t, \sqrt{2t+3}, e^{-t} \rangle$

Find the speed of the object at time t and compute the distance the object travels between times $t = 0$ to $t = 1$. 4

(b) (i) Prove that acceleration of an object moving with constant speed is always orthogonal to the direction of motion. 5

(ii) Find the tangential and normal components of the acceleration of an object that moves with position vector

$$\bar{R}(t) = (t^3, t^2, t) \quad 5$$